Skip to main content

The Concept of KNN Algorithm Using R

Understanding the Concept of KNN Algorithm Using R

 

The huge amount of data that we’re generating every day, has led to an increase of the need for advanced Machine Learning Algorithms. One such well-performed algorithm is the K Nearest Neighbour algorithm.

In this blog on KNN Algorithm In R, we will understand what is KNN algorithm in Machine Learning and its unique features including the pros and cons, how the KNN algorithm works, an essay example of it, and finally moving to its implementation of KNN using the R Language.

It is quite essential to know Machine Learning basics. Here’s a brief introductory section on what is Machine Learning and its types.

Machine learning is a subset of Artificial Intelligence that provides machines the power to find out automatically and improve from their gained experience without being explicitly programmed.

There are mainly three types of Machine Learning discussed briefly below:

  1. Supervised Learning: It is that part of Machine Learning in which the data provided for teaching or training the machine is well labeled and so it becomes easy to work with it.

  2. Unsupervised Learning: It is the training of information using a machine that is unlabelled and allowing the algorithm to act on that information without guidance.

  3. Reinforcement Learning: It is that part of Machine Learning where an agent is put in an environment and he learns to behave by performing certain actions and observing the various possible outcomes which it gets from those actions.

Now, moving to our main blog topic,

What is KNN Algorithm?

KNN which stands for K Nearest Neighbor is a Supervised Machine Learning algorithm that classifies a new data point into the target class, counting on the features of its neighboring data points. 

Let’s attempt to understand the KNN algorithm with an essay example. Let’s say we want a machine to distinguish between the sentiment of tweets posted by various users. To do this we must input a dataset of users’ sentiment(comments).  And now, we have to train our model to detect the sentiments based on certain features. For example, features such as labeled tweet sentiment i.e., as positive or negative tweets accordingly. If a tweet is positive, it is labeled as 1 and if negative, then labeled as 0.

Features of KNN algorithm: 

  • KNN is a supervised learning algorithm, based on feature similarity.

  • Unlike most algorithms, KNN is a non-parametric model which means it does not make any assumptions about the data set. This makes the algorithm simpler and effective since it can handle realistic data.

  • KNN is considered to be a lazy algorithm, i.e., it suggests that it memorizes the training data set rather than learning a discriminative function from the training data.

  • KNN is often used for solving both classification and regression problems.

Comments

  1. Hey There. I discovered your blog. That is an extremely neatly written article.
    I’ll make sure to bookmark it and return to read more of your useful information.
    Thanks for the post.
    If you are looking for data science courses in Bangalore, visit Learnbay.co
    website to check details related to the data science online courses.
    https://www.learnbay.co/data-science-course/

    ReplyDelete

Post a Comment

Popular posts from this blog

Data science: A Blend of These Data Components

Data Science Course ExcelR offers Data Science course, the most comprehensive Data Science course in the market, covering the complete Data Science lifecycle concepts from Data Collection, Data Extraction, Data Cleansing, Data Exploration, Data Transformation, Feature Engineering, Data Integration, Data Mining, building Prediction models, Data Visualization and deploying the solution to the customer. Skills and tools ranging from  Statistical Analysis , Text Mining, Regression Modelling, Hypothesis Testing, Predictive Analytics,  Machine Learning ,   Deep Learning, Neural Networks, Natural Language Processing, Predictive Modelling, R Studio, XLMiner,  Tableau , Spark, Hadoop, Minitab, programming languages like R programming ,  Python are covered extensively as part of this Data Science training. ExcelR is considered as the best Data Science training institute which offers services from training to placement as part of the Data Science training program wi...

Machine Learning Crash Course

Information science requires mastering in various fields like machine learning, R programming, Python, deep studying and plenty of extra. Machine Learning Engineer is categorized as one of the refined profiles due to the work profile in addition to the wage packages that the candidates draw from the companies. Many reinforcement studying algorithms use dynamic programming methods. This implies, through the use of a selected kind of algorithm, machines are given the facility of understanding the command and studying from there with out giving any further instructions or without programming again and again. It has been an important studying expertise for me. Online classroom training for Machine Learning Certification is carried out through online reside streaming of each class. The classification of information and labeling the information are trained in case of the supervised learning. The programme is designed for technology professionals who wish to advance their career as a spe...

Machine Studying Course Bangalore

Be taught the fundamentals of Machine Learning on this introductory course. A central application of unsupervised studying is within the field of density estimation in statistics , 26 though unsupervised learning encompasses other domains involving summarizing and explaining data features. According to Gartner, 2.three million Machine Learning Jobs shall be generated by 2020. If you have already got some experience in expertise and are serious about building a profession in the futuristic areas of Machine Studying, Deep Studying and AI, the PGPDM can equip you with all the abilities and instruments you need. The implementation particulars of these deep studying fashions along with tuning of the parameters will be illustrated in this course. I'd spent too much time building deep studying networks for ready datasets moderately than entering into the trenches and exploring data from scratch. I have completed my Machine studying training from Cetpa,Here i have discovered indepth in...